一窥天机:太空望远镜-

网上科普有关“一窥天机:太空望远镜-”话题很是火热,小编也是针对一窥天机:太空望远镜-寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。2...

网上科普有关“一窥天机:太空望远镜-”话题很是火热,小编也是针对一窥天机:太空望远镜-寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

2021年12月,原定于2007年发射的韦伯空间望远镜终于顺利升空,这是人类航天事业的大事情,无论谁干的,都值得祝贺。

不过,这年头天天都有大事发生,韦伯望远镜究竟算多大一事儿?

人类对宇宙的了解处于什么水平?这是个让人懵逼的问题,一方面,连太阳系九大行星都找不齐,向天王星、海王星发射轨道探测器都是没影儿的事,另一方面,对几十光年外的类地行星(类似地球的行星)却头头是道,超级地球、孪生地球、宜居行星的新闻不时见诸报端,到底哪个才是人类 科技 的真正水平?

要说清这个话题,得从人类 探索 宇宙的手段说起。

如果咱们能把探测器扔到别的星球上,那探测手段还是比较丰富的,次表层探测雷达、X射线谱仪、磁场探测仪,等等。可惜目前为止,人类探测器远没有飞出太阳系,出了土星轨道就算真正意义上的“人迹罕至”了。

所以,大前提就摆在这了:人类只能在太阳系里研究宇宙,更准确点说,人类主要在地球附近研究宇宙。

怎么研究呢?

只能被动接收来自宇宙的信息。

哪些信息呢?

电磁波、宇宙射线、引力波,其中大头是电磁波(包括可见光)。可以说,人类对宇宙的大部分认知,都是通过在地球上收集的各种各样电磁波,推算出来的。

没错,宇宙是算出来的。比如,观察一个恒星的颜色,或者说,在地球上收集这颗恒星发出的可见光,就可以算出它的表面温度,再加上恒星亮度,就可以算出它的年龄,再添一些参数,就可以算出它的距离。

还有更离奇的,开普勒空间望远镜,这哥们儿专门用来寻找类地行星。原理很简单,盯着一颗恒星看,如果这颗恒星的亮度会周期性变弱,那就说明有一颗行星定期从恒星前面飞过,阻挡了少量光线,就像苍蝇飞过探照灯,此曰:凌日现象。

据此可算出行星的公转周期、轨道、大小,甚至还可以通过光谱变化的特征,分析出行星大气的成分,比如苍蝇是火红色的,那么探测灯被遮挡时,多少能探测到一点红光。

如果这些算出来的参数和地球类似,就称为类地行星。所谓的类地行星,充其量就是见了个影子,至于上面是啥样,有没有生命,科学家知道的不会比算命先生好多少。

这么干靠谱吗?当然不算很靠谱,但也没有更好的办法了,人类感知宇宙的手段就这么多。不过,也不算很不靠谱,把这些手段做到极致,也能干出不少活。

到了宇宙尺度,时间和空间其实是一回事。

如果你想了解4.2年前的宇宙,那就研究4.2光年外的比邻星,因为我们现在接收到的所有关于比邻星的信息,都是4.2年前发出的。同理,想了解1亿年前的宇宙,那就观察1亿光年外的恒星,对地球人来说,宇宙活脱脱就是一个博物馆,不同距离上的恒星,代表了不同时期的宇宙演化过程。望远镜看得越远,就意味着看得越古老,远到极致,就能看到宇宙初期的样子。

这里所谓的“看”,就是收集这些恒星发出的各种电磁波信号。长波信号可以穿透大气层,因此只需把天线放在地表即可,学名“射电望远镜”。短波信号容易被大气层干扰吸收,如红外线、可见光、X射线等,所以得把家伙什儿放到太空,学名“空间望远镜”。

其中可见光部分最为直观,也最为吃瓜群众津津乐道,毕竟这是咱们肉眼能看到的。这活干得最出色的,当属大名鼎鼎的哈勃空间望远镜。

因为大气层对光线的扰动,地面望远镜看太空就像个近视眼,一度导致人类的观测范围只有几十亿光年。1990年哈勃望远镜升空,就像人类伸出水面的一个潜望镜,终于可以一窥宇宙全貌。

现在很多耳熟能详的知识:宇宙年龄、宇宙大爆炸、宇宙大小,都有哈勃的功劳。这只以收集可见光为主的望远镜,极大拓展了人类视野,堪称天文学的里程碑。

哈勃不但有巨大的科研价值,其 社会 价值也不容小觑,拍摄的大量美轮美奂的深空照片,激发了无数普通人对宇宙的向往和思考,可谓功在千秋。

2019年哈勃望远镜公布了迄今为止最详细的宇宙照片,这张照片包含了26.5万个星系,每个亮点放大都可以看到星系全貌(原图可至官网下载,贼大)。

不过,因为继任者迟迟不到位,哈勃不断超期服役,已经在天上待了30多年,难免力不从心。尤其最近几年,面临和国际空间站一样的窘境,扔了吧,可惜,不扔吧,修修补补,维护费早赶上造价了。要知道,在天上干活,费用也是上了天的,一次维修的费用都足够在地面建一个大型望远镜了。

继续烧钱给老态龙钟的哈勃续命是不现实的,哈勃退役几乎板上钉钉,这也意味着人类即将失去唯一的可见光空间望远镜。

那以后的日子是不是又得回到近视眼时代呐?

不用,因为自适应光学技术的出现。简单来说,这技术可以修正大气湍流等因素对光线的扰动,思路异常简单粗暴,你在哈哈镜里看到了扭曲的图像,那就再拿一个反向哈哈镜把图像还原。大气层就是一面哈哈镜,如何得到一个反向哈哈镜呢?

举个例子,首先打一束激光到天上,使大气里的钠元素发光,这个光线穿过大气层回到地面时,也会被扰动,把这个扰动量算出来,相当于测量出了哈哈镜的凹凸规则,以此调整望远镜的镜面形状,得到一个反向哈哈镜。因为扰动是不规则的,所以反向哈哈镜是一面凹凸不平的柔性镜面,又因为空气温度、湿度和气流实时变化,导致哈哈镜实时变化,所以柔性镜面也要跟着实时变化,甚至每秒得调整上千次的镜面形状。

不知道本僧有没有把事儿说明白,反正,这个过程令人叹为观止,你跟着叹就是了。

欧洲南方天文台位于智利的望远镜安装自适应光学系统后,拍摄的照片清晰度已经超过了哈勃。

既然如此,那就没必要非得把可见光望远镜放太空了。在地面干活,不但价格实惠,而且完全不用考虑重量和体积,镜头可以使劲造,日子美滋滋的。

早些年,口径8.1米的双子星天文台也算得上一号人物,两台望远镜分别位于夏威夷和智利,一南一北,加上地球自转,观察范围可以覆盖整个天区。但是很快,8米的门槛就被踏滥了,欧洲南方天文台在智利建造的甚大望远镜,由4台口径8.2米的望远镜组成,聚光能力相当于16米口径。日本国家天文台的昴星团望远镜把单面反射镜口径干到了8.3米。这还没完,即将投入运行的位于智利的美国大麦哲伦望远镜,由7块直径8.4米的子镜组成,等效口径大约有25米,成像清晰度达到哈勃的10倍。

单个镜子的口径到了8.4米已经差不多了,接下来就是更凶残的玩法:用一堆小镜子拼成大镜子。

由加拿大美国主导,包括中国在内多个国家参与的,位于夏威夷的,不断被环保组织阻挠建设的30米望远镜,主镜口径30米,清晰度吊打哈勃一个数量级。

预计2024年建成的位于智利的欧洲极大望远镜,主镜口径39米,清晰度比哈勃高16倍……

对望远镜来说,口径就是王道。对口径大小没概念的话,可以对比一下哈勃望远镜,2.4米。

等会儿,好像智利的出镜率有点高啊,这哥们儿天文学很强吗?说到智利特产,大伙可能想到的是樱桃,而本僧想到的却是……天文望远镜。

智利北部地区的气候和大气环境非常适合夜观天象,这里集中了全球一多半的顶级天文望远镜。值得一提的是,中国也在这儿建造自己的天文台,如果不算南极科考站的口径0.68米的巡天望远镜,这应该是咱们头一回在别的国家建造望远镜。

多嘴一句,前面提到的所有望远镜,加一起,还没哈勃贵。

所以这事儿没啥可说的了,相比如火如荼建设的地面望远镜,可见光空间望远镜几乎无人问津……除了中国。

中国空间站有个配套装置叫“巡天光学舱”,是一台口径2米的可见光望远镜,计划2024年发射,届时可能是人类硕果仅存的可见光空间望远镜。那么问题来了,人家都在地上搞了,咱为啥还要上天搞呢?

首先当然是因为太空望远镜仍然具有地面望远镜不具备的优势,比如,自由地指向任意方向观测,长时间对一个方向连续曝光,不会被人造卫星干扰,等等。其次,哈勃说到底就是太贵,而巡天望远镜和空间站共轨飞行,紧挨着,从空间站出去干活,成本就低太多了。

最有意思的是,巡天可以对地观测,是不是有点意外?这台天文望远镜,居然可以调转方向观察地面,至于这么干的意义嘛……你猜!

作为人类唯二的可见光空间望远镜,巡天免不了被拿来和哈勃做一番比较,其实吧,这话题和空间站一样,上天时间差了35年,有啥好比的呢?两者差异除了技术水平,很大程度是设计取舍导致的。另外,吃瓜群众们也别指望在这领域一举超越美帝,差距仍有肉眼可见那么大。

说了这么多,那么,韦伯上天究竟算多大一事儿?

通过对大气扰动的修正,可见光的事好歹算摆平了,但红外线、紫外线、X光就没那么容易打发了,因为这些家伙不是被大气层扰动,而且被大气层吸收了。任凭你在地面如何折腾,也不可能还原已经消失的信号。

所以,这活还得上太空。

按照现有理论,宇宙一直在膨胀,且膨胀速度超过光速,这导致遥远天体的光谱红移非常明显,那儿发出的可见光,到了这儿可能就成了红外线。

这么一来,你想看得远,就得指望红外线。

哈勃在红外波段只能凑合用,看到134亿光年就顶天了,也就是宇宙大爆炸后4亿年的情形。但是根据最新的研究表明,宇宙的第一批恒星是在大爆炸后2亿~3亿年之间诞生的,这就是所谓的“宇宙的第一缕光”。

寻找这第一缕光,非红外望远镜莫属。

于是,韦伯来了。

咱们给的官方名字是“韦布空间望远镜”,但大伙已经习惯叫韦伯了。

这家伙之所以拖了14年才发射,是因为确实花了海量心血,充分体现了美帝在精密工业领域的深厚功底,几乎达到了人类工程学的极限。

比如,口径6.5米的主镜,表面粗糙度低于10纳米,另外,为了不浪费这种加工精度,与之配套的支架和控制系统精度可想而知。

这么复杂且庞大的架子,在太空展开后,误差不超过几十纳米。

温度越高,红外线就越强,所以作为一台红外线望远镜,制冷就成了头等大事,不然你自身发出的红外线就足够折腾了。

举个风马牛不相及的例子。

最近俄乌战争中名噪一时的美国标枪导弹,在使用热成像前,需要对红外成像器件进行持续制冷,美军标枪导弹使用手册显示,开机后必须要等2分半到3分半。而导弹配备的小型电池和制冷机只能坚持4分钟,也就是说,射击窗口最多只有1分30秒,如果在1分半内没有完成锁定和发射,射手就必须更换制冷机和电池。因此,只要侦察得当,步坦协同到位,标枪要对付坦克并不容易。

扯远了。无论天上地下,想和红外线打交道,首先自己得够冷。

很多人以为太空这么冷,制冷还不简单!其实刚好相反,因为太空没有空气可以散热,太阳一晒就滚烫,所以首先得隔绝阳光。韦伯带了5层又大又薄的遮阳帆,为了尽可能反射热量,这5层仅几十微米厚的薄帆也是费尽心机,可以保证背面温度在50K以内。

但这还不够冷,为此科学家专门开发了一种脉冲管低温冷却器,这玩意儿不但可以把红外传感器冷却到7K,还几乎没有振动。你想想,如果冷却器造成了几十纳米的晃动,那前期的精确加工就全白忙活了。

如果仅仅是这些,韦伯不至于拖14年,最麻烦的事还在后面。

地球本身就是一个很大的红外发射源,为了避免地球干扰,韦伯要离地球远远的。多远呢?在拉格朗日点,简单来说,在这个地方,太阳引力和地球引力相当,飞行器可以悬停在此,有点像地球同步轨道的意思。这种地方有5个,韦伯停在离地球150万公里的L2点。

相比来说,哈勃离地球只有590公里,其实哈勃上天后立马就出问题了,主镜偏差了千分之二毫米,拍的照片惨不忍睹,于是就把航天员送上去进行了第一次维修。

而150万公里外的韦伯,是绝对不可能派人维修的。韦伯有多达344个故障点,没有多余备份,只要其中一个出问题,100亿美元就打水漂了。悲剧的是,地面测试时,这些故障点经常出问题,比如2018年薄薄的遮阳帆展开时就被撕裂了。在这种压力下,拖14年也就显得没那么离奇了。

总之,韦伯有大量令人发指的工程细节, 科技 含量无可挑剔,堪称人类精密工业的巅峰之作,担得起“史上最强望远镜”的称号。

如此吊炸天,那它能看到宇宙的诞生吗?不能,红外线不是万能的,甚至电磁波也不够说明宇宙起源,这活至少要集合引力波、暗物质、中微子等一众骨干才能窥见一二。

韦伯空间望远镜工作在近红外和中红外波段,用于观测宇宙大爆炸初期第一批恒星和星系的形成。按照目前理论,宇宙年龄138亿年,哈勃已经看到了134亿年,而韦伯可以再多2亿年。

2022年3月11日,韦伯望远镜完成了最后一轮镜片微调,传回了第一张校准时拍摄的清晰照片,已经逐渐进入工作状态,预计夏天正式开启科学观测,为人类视野再添2亿光年。

还有一个题外话,韦伯不但是 科技 典范,也是坑钱典范,不但充分体现了美帝的 科技 实力,也充分体现了美帝的钓鱼手段。

韦伯最早的预算是5亿美元,不过很快就发现不够烧,第二年就加了5亿,不加不行啊,不然前面的5亿就打水漂了。过了两年,发现钱还是不够烧,再加8亿,不加不行啊,不然前面的10亿就打水漂了。又两年,再加7亿,不加不行啊。三年后,加5亿。过一年,再5亿。两年后,6亿……就这样一口一口,一直啃到了97亿,比哈勃还败家。

前面说可见光时,还能看到咱们国家的身影,但在红外波段,似乎有点寒碜?

这其实不奇怪,我国是发展中国家,发射的卫星大多是有具体用途的,比如用来监测耕地是否被侵占的农业卫星,比如用来监测森林是否起火的红外卫星,等等,很少用于纯基础科学研究。本僧掐着指头数了数,好像只有2个半:一个是寻找暗物质的悟空号,一个是研究X射线的慧眼号,还有半个是用于验证量子通信技术的墨子号(不算严格意义上的纯基础科学)。

其中,慧眼号就是一台空间望远镜,全称:硬X射线调制空间望远镜。

如果说红外线是研究恒星起源必不可少的,那么X射线就是研究恒星死亡必不可少的。X射线属于能量比较高的电磁波,通常来自比较剧烈的天体活动,比如恒星爆炸之类的,研究高能天体肯定少不了X射线,所以也算一个研究热点。

相比无人问津的可见光空间望远镜,X射线望远镜算得上络绎不绝。没办法,X射线经过大气层就没剩啥了,大家只能上天去干活,欧洲的XMM-牛顿卫星、美国的罗西X射线时变探测器、钱德拉X射线天文台、日本的朱雀卫星、德国的eROSITA X射线望远镜……

在各国众多的X射线望远镜中,慧眼妥妥算上乘了,是全世界灵敏度和分辨率最高的硬X射线望远镜。这不算啥,作为慧眼的继任者,由中国领导的大型国际合作空间项目“增强型X射线时变与偏振空间天文台”预计2025年发射升空,到时候就是国际领先的旗舰级空间X射线天文台。

迄今为止最详尽的宇宙X射线图,包含了100万个X射线源,数据来自德国eROSITA X射线望远镜的首次巡天任务。

最后,咱们为烧钱的天文学找一个硬核理由。

1974年,为庆祝阿雷西博射电望远镜改建完成,该望远镜向2.5万光年外的M13球状星团发射了一串含有人类文明的信息,这就是著名的“阿雷西博信息”。

如今这条信息已经跑了大约50光年。如果外星人 科技 再高一点,能探测到无比微小的无线电信号,那么1901年马可尼进行的横跨大西洋电报试验,就是人类发出的第一个无线电信号,如今这个信号已经跑了120光年。

这就是人类痕迹在宇宙中所到达的最远距离。

咱们侥幸一点,就按50光年算吧,目前在这个范围内发现的类地行星大约50颗左右。在这50颗星球上产生智慧生物,并且该生物具有攻击太阳系的能力和意图,概率实在微乎其微,所以地球人还不用担心。

于是,这条信息继续往前跑,在目的地M13球状星团的范围内,已经发现了五六千颗类地行星,算上还没发现的,少说几万颗起步,这回咱就不敢保证了。

再把基数扩大,据天文学家保守估算,银河系至少有60亿颗类地行星,你想想,地球何德何能成为60亿分之一?几乎可以肯定,银河系里一定还有其他智慧生物。

那么,在接下来的10万年里,可能会有智慧生物收到地球人的信息。这个猜测是有依据的,以目前人类的 科技 水平,已经可以探测到50光年外的普通雷达信号,如果外星人比我们多发展个两三千年,接收一条几千光年外的电磁波岂不是小菜一碟?

这事儿,咱得未雨绸缪啊!

是寄希望于外星人大爷无私的帮助地球人?还是凭借旗鼓相当的 科技 水平友好交流互通有无?比如,你想看秦始皇登基的画面,那就找到2200多光年外的外星人,拍下“它们”现在的画面(对它们来说是两千多年前的画面),再通过虫洞和它们交换。

阿雷西博信息已经上路,地球人,留给你们的时间不多了。

韦伯望远镜鸽了14年后终于发射

 韦伯望远镜鸽了14年后终于发射,詹姆斯·韦伯望远镜有两大主要任务,一个是观测宇宙的边缘,另一个是寻找围绕恒星运行的行星。韦伯望远镜鸽了14年后终于发射。

 韦伯望远镜鸽了14年后终于发射1

 刚刚,詹姆斯·韦伯空间望远镜(James Webb Space Telescope,JWST,根据国家天文科学数据中心,其标准译名为“韦布空间望远镜”)发射升空。号称世界上最可靠的重型运载火箭之一的阿丽亚娜5型火箭(Ariane 5)徐徐升起,借助法属圭亚那库鲁航天中心低纬度带来的高自转速度,载着JWST飞向属于它的太空。

 随着JWST一起上升的,还有无数天文学家、天文爱好者激动的心情。JWST的发射时间从2007年一直拖延到现在,近百亿美元的耗费也远远多于当时5亿美元的预期。对不少读者而言,“詹姆斯·韦伯”这个名字似乎很早就在记忆中出现过了。JWST的建设也的确算得上一场漫长的征途。

 哈勃空间望远镜(HST)是1990年发射的,但在美国空间望远镜研究所(Space Telescope Science Institute,STScI),对哈勃继任者的讨论从1 989年就已经展开了。1996年,他们认为下一代望远镜应该是主镜直径4米以上的红外望远镜。2002年选定科学团队,2004年开始建造,2005年选定发射场,2011年18片主镜制造完毕,2013年开始制造遮阳板,2015年组装光学组件,2017年进行测试,2018年整体组装测试,最终在2021年发射。但对那些一直在等待的人来说,这一切都是值得的,JWST夸张的参数也足以让它配得上哈勃继任者的称号。

  哈勃继任者

 JWST主镜口径达到6.5米,由18片铍镜片拼接而成,每片直径1.32米,仅重20千克。选用金属铍为主镜材料,是因为铍质量较轻且强度较大,并且在低温环境下仍能保持形状。一般的镜子应该能完全还原物体原本的颜色,但JWST的镜片明显是**的,这是因为它在镜面上镀了700个原子厚的金,这样能提高镜片对红外线的反射能力,JWST主要观测的就是红外线。严格来说,JWST观测的波长范围从橙色的600纳米一直延伸到远红外的28.5微米。

 JWST和哈勃,斯皮策观测波段的对比(来源:webb space telescope media kit/NASA)

 观测红外线是件麻烦事,因为黑体辐射,所有300开尔文左右的物体都在发射红外线。所以必须对望远镜进行冷却。在太阳系内,最大的热源就是太阳,必须把主镜和太阳隔绝开来,于是科学家为JWST设计了5层遮阳板,每层大小约为21米×14米,厚度却仅有几十微米:最外侧为50微米,其余4层为25微米。面向太阳的一侧,遮阳板温度高达125℃,而主镜一侧的温度可以低到-235℃。按常见防晒产品的标准来算,这5层遮阳板的SPF系数高达100万,能将太阳辐射的影响降到原来的百万分之一。

 之所以要克服这么多困难在红外波段观测,是因为来自早期宇宙的光在经过百亿年的红移后,早就变成了红外线。在波长相同的情况下,望远镜口径越大,空间分辨率也就越高,在光学波段,JWST的分辨率高达0.1角秒;6.5米的口径同时带来了前所未有的灵敏度,理论上,它能探测到地月距离那么远的一只大黄蜂的发出的红外线。除了传统的相机,JWST还搭载了光谱仪和星冕仪,能让它获得更多科学数据。为了到达拉格朗日点L2点附近避开地球、月球光线的干涉,获得最优的观测环境,整个望远镜的重量被限制到了6.2吨,和一辆中巴车相当。

  可折叠望远镜

 当然,想把望远镜发射到天上,仅仅减轻重量是不够的,没有火箭能装得下这么大的结构,JWST必须是可折叠的,这带来了更多困难。JWST的主镜、副镜、5层遮阳板,还有老生常谈的太阳能板,都是可折叠的。

 JWST折叠放置在阿丽亚娜5整流罩中的示意图(来源:webb space telescope media kit/NASA)

 从打包状态到完全展开是一个复杂的过程。发射不久后,JWST就会打开太阳能板获取能量。在这之后,JWST还会修正几次轨道,因为阿丽亚娜5并不能直接把它送到L2点附近轨道,那样会将望远镜的光学组件暴露在阳光下造成损害。在发射2.5天后,JWST展开两个遮阳板支架,然后望远镜的可展开塔组件(Deployable Tower Assembly)会展开,将JWST的光学部分和其他部分分离开来,为5层遮阳板提供空间。全部5层遮阳板会在发射后一周内展开。副镜和主镜会在第二周内展开。发射29天后,JWST将进行最后一次机动,驶入L2点轨道,该轨道在月球轨道之外,距地球大约150万公里,在地球引力的帮助下,JWST将绕着太阳一起旋转。

 在那之后,JWST仍不能开始工作,它要开始漫长的冷却。遮阳板的暗面大约会在那之后3周冷却到40开尔文左右,而JWST的MIRI设备还需要额外制冷剂冷却到7开尔文。在那之后望远镜将会对变形过程中产生的误差进行修正,主镜和副镜会在发射4个月后完成调试,那时它们位置排列的误差会小于观测波长,仅有几纳米。在经过几个月的调试、测试后,JWST将会在发射约半年后开始正式科学观测,为我们揭开宇宙早期的秘密。

  科学目标

 JWST能帮人类寻找宇宙中第一批形成的星系,揭开宇宙黑暗时代之后再电离时代的秘密。因为红移的作用,在宇宙中选择不同波长的光进行观测,就好像坐上了时光机,JWST将观测波长缩短,就能观测宇宙的不同阶段,研究星系、恒星是如何在宇宙百亿年的历史中演化的。它还能帮我们分析地外行星的大气成分,为太阳系中其他成员拍下更清晰的照片。

 这些科学目标听上去似乎就是哈勃的工作,这也正是JWST被称为哈勃继任者的原因之一。哈勃空间望远镜革新了全人类对宇宙的认知,为我们带来了数不胜数的震撼照片,而JWST能看到更深的宇宙,能穿透茫茫的时空,将隐藏在宇宙尘埃背后的秘密悉数揭开。就像哈勃、开普勒、TESS这些为人类作出伟大贡献的望远镜一样,JWST的数据将会存储在米库斯基空间望远镜数据库(Mikulski Archive for Space Telescopes,MAST)中,向全人类公开。

 JWST复杂的结构带来的是前所未有的技术难度,北美和欧洲共14个国家的数千名科学家,工程师和技师,他们为JWST忙碌的时间超过了4000万小时,他们在JWST上实现的技术突破更是数不胜数:热开关,轻质低温镜片,制冷技术,红外传感器……任意一个组件背后凝结的汗水都不可计数。

 但复杂的结构带来的是极高的出错概率,在测试过程中,JWST被发现有344个点位可能出现故障。发射之后,JWST的轨道位于月球轨道之外,人类根本没有对其进行修复的可能。这也是为何面对JWST,所有人都是慎之又慎,这几个月来JWST的发射时间也从12月初慢慢推迟到了圣诞节当天。这是一个浪漫的巧合,因为对那些热爱星空的人来说,JWST就是最好的圣诞礼物。

 哈勃太空望远镜 来源:NASA

  “鸽”了14年

 詹姆斯·韦伯太空望远镜以NASA早期管理人员之一詹姆斯·E·韦伯(James E. Webb)的名字命名,他在1960年代监督了阿波罗计划。早在2002年,差不多20年前,韦伯的名字就首次被用于"下一代太空望远镜",这个计划最初预算为5亿美元,并准备在2007年发射。但由于各种原因,2019年8月28日才组装完毕,升空日期一直“鸽”到了14年后的今天,比这台红外线空间望远镜的预计寿命还要长。原先,“韦伯”的预算费用是5亿美元,现在已经花了96.6亿美元,四舍五入就是100个亿,项目严重超支,堪称不折不扣的“鸽王”。

 1、按最初计划,韦伯望远镜本应在2014年升空,但后因预算等问题推迟。

 2、2017年9月,美国航天局表示,詹姆斯·韦伯太空望远镜的发射窗口将从2018年的10月推迟至2019年的3月至6月之间。声明解释说,韦伯望远镜及其遮光板的体积和复杂性超过多数探测器,比如仅遮光板释放设备就要安装100多个,振动测试也要用更长时间,所以推迟到2019年春季从法属圭亚那库鲁航天中心用欧洲的阿丽亚娜5型火箭发射升空。

 3、2018年3月28日,美国航空航天局再次宣布韦伯在2020年之前不会发射升空。

 4、2018年5月6日,受一系列技术问题的困扰,JWST的最新发射日期已经被推迟到2020年。

 5、2018年6月29日,据国外媒体报道,哈勃望远镜的“接任者”詹姆斯·韦伯望远镜将推迟至最早2021年3月30日发射。

 6、2021年10月12日,詹姆斯·韦伯空间望远镜成功抵达位于南美洲的法属圭亚那,计划12月18日在欧洲航天局阿丽亚娜5号火箭上发射升空。

 7、2021年11月22日,NASA再次宣布詹姆斯 · 韦伯太空望远镜的发射时间从12月18日推迟到了22日。

 8、2021年12月15日,由于需要解决韦伯望远镜和阿丽亚娜五火箭之间的通讯问题,发射推迟不早于12月24日(来来回回好像有两次)。

 9、2021年12月22日,詹姆斯韦伯太空望远镜JWST通过发射准备评审,但是,由于天气原因,发射推迟到12月25日。

 韦伯望远镜鸽了14年后终于发射2

 2021年12月25号,晚7:20,詹姆斯·韦伯望远镜在法属圭亚那库鲁航天中心,由阿里亚娜火箭发射升空。

 韦伯望远镜,在推迟了N次发射以后,终于升空了。

 这个望远镜实在是太难搞了,研制复杂,组装复杂,轨道维持都不容易。

 望远镜最重要的两个指标,一个就是看得清楚,还有一个就是看得远。

 但是呢,测量距离要两个点三角测量,望远镜一个点没有办法分辨物体的远近,只能看到一个视张角。

 就比如说,太阳跟地球的距离是1.5亿公里,但是月亮距离地球只有38万公里,两个看起来是一样大,就是因为视张角是一样的。

 用视张角表示的望远镜分辨率,又被称为角分辨率。

 哈勃望远镜,它的角分辨率就是50角秒。

  望远镜的角分辨率。

 望远镜的角主要是望远镜的口径所决定的。

 在科学计量上,角度的划分是这样的,一个圆周360角度,1角度等于60角分,1角分等于60角秒,1角秒等于1000毫角秒。

 天文学家用来计算望远镜分辨率的道斯极限公式,R=11.6/D。

 11.6是一个和观测光线波长有关的值,R是角分辨率,单位是角秒;D是望远镜镜头直径,单位为厘米。

 韦伯望远镜主镜张开直径有6.5米,如果按照这个公式,比哈勃望远镜的分辨率要高了三倍。

 但是,实际上望远镜的光线聚焦方式,也会影响望远镜的清晰度。

  为什么詹姆斯韦伯望远镜长得很奇怪,像一把大伞?

 我们知道,光线聚焦有两种方式,一种就是通过透镜来折射,还有一种是通过镜片反光聚焦。

 所以望远镜分成折射式望远镜,以及反射式望远镜。

 折射式望远镜,镜片有一定厚度,对光线有一定的衰减,所以对清晰度有影响。

 反射式望远镜不会造成光线的衰减,是比折射式望远镜更好的一种望远镜。

 詹姆斯·韦伯望远镜就是一个反射视望远镜,它张开以后像那个伞面一样的,就是它的反射镜。

  屡次推迟发射到底是为什么?

 詹姆斯韦伯望远镜从1996年开始研制,原定于2007年发射。

 因为整个研制过程太复杂了,中间出了很多问题,所以一直推迟到现在。

 原定研制计划预算是5亿美元,后来屡次增加投资,最终完成时耗资96亿美元。

 为了降低望远镜主体的重量,它的主反射镜使用的材料是金属铍。

 为了完美反射光线,抛光精度要达到10纳米。而且为了控制主镜在工作时产生的畸变,在主镜的背后还有7个电子仪器来测量、调控组镜的曲率。

 铍的价格非常昂贵而且有剧毒,所以在制造的过程中必须有防护,而且要非常仔细操作。

 但铍的物理性质很好,密度只有1.85,比强度是所有金属材料中最高的。比强度的排名来说,铍第一,其次才是钛,再次才是铝,最后才是钢。

 为了把这个反射镜装进卫星的整流罩里,设计成了18块可以折叠的形式,到太空中以后再张开。

 但是在地面上的时候它是18块分开测试的,由于没有办法完全模拟在太空中展开的情况,所以这个测试也用了很久。

 原定今年10月份就要发射的,后来屡次推迟。

 原因就是这次发射必须慎之又慎,必须一次性成功,如果再出问题就没有办法维修了。

 詹姆斯·韦伯望远镜定点位置在地球和太阳之间的拉格朗日二点,这个点距离地球有150万公里。

 哈勃望远镜就是因为出了点问题,第1次发射到太空上的时候,看星星是模糊的,变成了一个近视眼。

 后来派航天飞机去修了几次,才把它修好,但是哈勃望远镜距离地球只有570公里。

 载人宇宙飞船目前还没有办法飞到距离地球150万公里的地方。

  为什么要距离地球这么远?

 詹姆斯·韦伯望远镜有两大主要任务,一个是观测宇宙的边缘,另一个是寻找围绕恒星运行的行星。

 这两个观测任务都是在寻找比较暗的光线,也就是说在红外波段的光线,为了收集到更多红外光线,还在反射组件上面镀了一层黄金,所以看起来是金黄金黄的。

 我们知道在宇宙的边缘,由于宇宙的高速扩张,138亿光年远的星系都在做远离地球的运动,远离的速度已经接近光速,星体发出来的光线因为红移的原因,变得非常的暗淡。

 在宇宙的边缘,隐藏着宇宙大爆炸不久后宇宙的真面目。

 宇宙大爆炸到底是不是真的?还是只是人类的臆想?这是人类最想了解的内容之一。

 詹姆斯·韦伯望远镜,就肩负着揭开这个秘密的使命。

 接收幽暗光线的仪器必须非常灵敏,而且要冷却到接近于绝对零度。

 所以,詹姆斯韦伯望远镜必须远离地球这个热源,同时还要屏蔽掉太阳的热量,所以望远镜的主体要躲在一个巨大的遮阳伞后面。

 詹姆斯·韦伯望远镜的观测波段主要在0.6-28.3微米的频段。采用了一系列先进的措施以后,它的观测精度可以达到10倍的哈勃望远镜的精度。

 望远镜定点在拉格朗日2点,正好和地球同步围绕太阳运转,可以保持和地球恒定的通信距离。

  围绕拉格朗日二点的轨道也很特殊。

 拉格朗日二点是一个不稳定的平衡点,望远镜只能围绕拉格朗日二点做圆周运动,这个轨道被称为晕轨道。

 我们国家发射的嫦娥4号降落在月球背面,就是靠运行在地球、月亮拉格朗日二点的鹊桥中继卫星,进行中继通信的。

 鹊桥中继卫星也是在一条轨道上。

 这个轨道是一个非常复杂的三维曲面,必须不停进行轨道维持。

 以前发射的所有望远镜都不用做这么复杂的轨道维持。

 所以,这100亿美元一旦打出去,要么就是100%成功,要么就是打了水漂,所以慎之又慎。

 用一句打牌时的术语,就是梭哈了,全靠这一把。

 韦伯望远镜鸽了14年后终于发射3

 2021年12月25日,这注定是人类航天史的历史性时刻——在推迟发射14年后,被人们称为“鸽王”的詹姆斯·韦伯太空望远镜,终于搭乘欧空局阿里安5-ECA火箭成功升空,开始了它前往150万千米外“日-地拉格朗日2点”的旅途。

 韦伯望远镜升空(来源:NASA)

  迄今为止全世界最贵望远镜,究竟有多贵?

 20个国家持续25年的投入和数万名科学家的倾力合作,造就了这个史上制造单价最贵的航天器。

 有多贵?

 目前,包括后续的运营和科研费用,詹姆斯·韦伯太空望远镜(以下简称为詹姆斯·韦伯)的总经费预计已超过100亿美元。

 考虑到它的质量仅为6.5吨,也就意味着它的单价超过人民币10000元/克,是黄金单价的20余倍!

 詹姆斯·韦伯看起来犹如一艘太空战舰(来源:NASA)

 詹姆斯·韦伯究竟有什么样的特殊使命,能让这么多国家倾注如此大的'人力、物力、财力在它上面?它又能为人类带来什么呢?

  贵有贵的道理——韦伯的观测能力远超前辈

 宇宙是个充斥着各种电磁波和高能粒子的喧闹世界,那里既藏着遥远的历史,也昭示着人类乃至太阳系的未来。

 对于望远镜来说,可见光到红外线频段是观测的重点,尤其是追踪宇宙大爆炸后残留的红外线,它们已经在宇宙中传播了138亿年,蕴藏着宇宙最初的奥秘。

 然而,地球大气层、磁场、人类活动等因素,却使得地球成了一个典型的“信息茧房”。在广阔的电磁波频段中,只有极小一部分能顺利抵达地球表面并被望远镜观测到,其他的则几乎都被屏蔽在外。

 从地球表面观测电磁波的频谱窗口透明度,真正的有效观测的窗口极小(来源:维基百科)

 解决这个问题的办法只有一个:把望远镜送出地球。

 不同望远镜的使命也不同,这次被送出地球的詹姆斯·韦伯的观测波段主要集中于波长为0.6-28.3微米的橙色光到红外线频段,它的更大口径和一系列新技术带来了远超前任哈勃、施皮茨、赫歇尔等知名太空望远镜的观测能力。

 例如,它能够看到更暗更古老的天体,甚至可以追踪到宇宙中第一批星系形成的痕迹,投入工作后将会极大提升人类红外天文学的相关研究。

 前所未有的造价和划时代的意义,也让这个望远镜“荣幸”地以NASA(美国国家航空航天局)第二任局长詹姆斯·韦伯命名。詹姆斯·韦伯于1961-1968年在任,领导了NASA最辉煌的阶段。在这一时期,NASA曾获得空前绝后的资金支持,不仅推动了水星计划、双子座计划、阿波罗登月计划、先锋计划、水手/旅行者计划等一系列大型项目的开展,也为美国在航空航天领域的人才技术优势打下坚实基础。

  造价100亿美元,这些钱都花在了哪里?

 虽然100亿美元看起来很多,但实际上对于研制詹姆斯·韦伯这样的顶级望远镜的项目来说,并不能说非常宽裕,至少不是大家想象中的想怎么花就怎么花。没办法,前沿科学研究就是这么“烧钱”。

 为了获得更好的观测能力,詹姆斯·韦伯在各项方面都进行了升级、更新,可以说每笔钱都用在了刀刃上。

  1、更大口径的镜片

 光学和红外望远镜的核心是镜片,其口径与观测能力成正比,但也需要更高成本。相比此前最大的哈勃望远镜,詹姆斯·韦伯的镜片口径从2.4米提升到了6.5米,集光面积也从4.5平方米攀升到了25.4平方米。

 需要注意的是,口径增加带来的整体难度和造价提升并不是线性增长关系,光是这一项,就直接决定了詹姆斯·韦伯的预算远超哈勃。

 人类、哈勃望远镜主镜和詹姆斯·韦伯主镜的大小对比(来源:NASA)

 镜片太大,几乎很难整体制造,不仅失败风险大、材料成本极高,也势必带来整体质量和体积的攀升,甚至远超人类现有火箭的发射能力。因此,詹姆斯·韦伯的镜面设计选择了拼接方案,由18面一模一样的六边形组成,发射时折叠起来,进入太空后再拼接到一起。

  2、堪称“鬼斧神工”的镜面材料

 詹姆斯·韦伯在制造、发射和工作时要面临截然不同的温度环境。特别是它的核心器件工作温度已非常接近绝对零度,对镜面材料的要求极高,因此需要同时具备抗弯刚度高、热稳定性好、热导率高、反射率高、密度低、温度形变小、性质不活泼等特点。

 而在精度要求上,最后镜片成型的制造加工精度要达到10纳米级别,这个要求所允许的误差相当于一张A4纸厚度的万分之一!而且在进入太空后,整体拼接和镜片姿态控制的精度也要达到同等水平。

 综合上述要求,詹姆斯·韦伯的镜片主要材料选择了碱土金属铍,10纳米几乎就是几十个铍原子并排摆在一起的宽度,这是接近“鬼斧神工”级别的制造加工工艺要求。

  3、一把屏蔽热量的“太阳伞”

 远离地球,不代表能彻底摆脱地球的干扰,詹姆斯·韦伯还要面对太阳光和地球反射光/热辐射的干扰。为此,它需要背上一个大大的“太阳伞”来屏蔽热量,并使用主动冷却系统维持核心部件接近绝对零度的工作环境。

 遮阳板总共有五层,都要精准打开(来源:NASA)

 按照设计要求,这把伞需要提供300摄氏度以上的温度屏蔽效果。这相当于一面是高温油炸,另一面却是冰天雪地。它的每一层材料主要由聚酰亚胺、硅膜和铝膜构成,首层最厚也仅为50微米,比人类头发丝直径还小,而中间层仅为25微米。

  更大的难度还在后面——这把“太阳伞”如何顺利展开?

 “太阳伞”每一层的面积约300平米,在发射时会被塞进火箭里剧烈振动,进入太空后要在激光引导下让100余个小型拖车带着逐层展开。难度可想而知,这无疑是人类历史上最厉害的一个遮阳板。

 整体来看,詹姆斯·韦伯需要的都是最先进的科技,且各种研发都是“孤品”,它既没有备份,也不会量产,必须保证100%成功率。除此以外,还要经过一系列极高成本的测试和维护。这些因素累加在一起,让它的预算迅速攀升到了100亿美元级别。

 詹姆斯·韦伯的官方海报(来源:NASA)

  看似“咕咕咕”,其实是必须一次成功的魄力

 我们都知道,哈勃望远镜虽然远在太空中,但也仅离地球表面大约575公里,可以说“紧挨”着地球。那詹姆斯·韦伯为什么不能像哈勃望远镜一样,在离地球近一些的地方工作呢?

 这是因为地球和所有的物体一样都是热源,在源源不断往外反射阳光和辐射红外线,否则就会持续变暖。因此,即使在太空中,地球附近不可避免地存在逃逸的空气分子和星际尘埃,对太空望远镜依然有一定影响。对于更加精密的詹姆斯·韦伯来说,这些影响尤其明显。所以,它必须想尽办法远离它的诞生地——地球。

 然而,“逃离”地球后,并非就万事大吉了。进入错综纷繁的引力世界,航天器将受到太阳、地球、月球,乃至宇宙万物的引力影响,这使得它的轨道很难稳定下来。对于质量和体积都很大的望远镜而言,频繁地通过发动机工作维持轨道,不仅会导致发射时必须携带大量推进剂,也会极大地影响观测质量。

 因此,必须要在上述要求中找到一个平衡。权衡利弊后,科学家们选择了日-地引力平衡的拉格朗日2点作为詹姆斯·韦伯的工作地点。这里距离地球150万公里(月球距离地球不过38万公里),远离了地球这个热源和灰尘源的干扰,温度也低达零下220摄氏度以下,可满足望远镜的整体工作温度环境要求。此外,在“日-地拉格朗日2点”,太阳和地球两大引力源和谐共处,共同牵引附近的航天器围绕太阳稳定运动,航天器所需要的轨道维持成本极低。

 不过,这给詹姆斯·韦伯带来了另一大挑战:这么远的距离,一旦它出了任何问题,人类是不可能去维修的。这也意味着它变成了“一锤子买卖”,要求一次性成功,不能有任何失误。

 这和哈勃望远镜形成了鲜明的对比。当年哈勃升空后出现了一系列问题,于是在1993-2009年间,人类通过五次极其昂贵的航天飞机任务不断维护并提升哈勃,才使得它获得了今天举世瞩目的成就。

 如今,航天飞机已经彻底退役,人类也失去了在太空中维修大型航天器的能力。不过,即便航天飞机再次出山,也不可能前往“日-地拉格朗日2点”。毕竟,哈勃的工作地点距地球不过几百千米远,这和詹姆斯·韦伯与地球之间的150万千米的距离,是完全不同的概念。

 某种程度上,这也是詹姆斯·韦伯鸽了又鸽的重要原因——一旦发射,承受不起一点失误。

 为哈勃太空望远镜,NASA总共进行了六次航天飞机任务,付出了巨大代价(来源:作者自制)

 所以,对于负责火箭发射的欧空局而言,这次的成功毫无疑问是令人兴奋的,发射团队紧绷了数年的神经终于可以好好放松一下了。毕竟这是个100多亿美元的“一锤子买卖”,背后有着无数人几十年的努力付出。

  在探索宇宙的路上,又迈出了新的一步

 詹姆斯·韦伯的漫长研发史,是人类最顶级智慧的结晶。现在,它终于顺利升空前往遥远的目标工作地点。也许很多人会关注它的经费,感慨前沿科学研究的“烧钱”,但是,我们更应该认识到,我们为前沿科学付费,其实是在为人类上下求索的决心与梦想付费,如此看来,这价格也不能说是昂贵。

 未来,詹姆斯·韦伯会给人类带来什么?可以预知的是,它能更容易探寻到宇宙的边界和最初的奥秘;无法预测的是,科学家们将在它的数据里获得何等惊人的发现。它是人类梦想向宇宙深处的又一次延伸,是人类好奇心与探索精神的承载,是人类在探索世界的路上迈出的新的一步。让我们祝福它远航的路上一切顺利,期待它带来新的发现与启迪!

关于“一窥天机:太空望远镜-”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[钞明硕]投稿,不代表小熊号立场,如若转载,请注明出处:https://xx-scm.com/cshi/202504-10692.html

(258)

文章推荐

  • 今日教程“微信小程序微乐麻将有挂吗”(其实是有挂)

    今日教程“微信小程序微乐麻将有挂吗网上科普有关“今日教程“微信小程序微乐麻将有挂吗”话题很是火热,小编也是针对今日教程“微信小程序微乐麻将有挂吗寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,今日教程“微信小程序微乐麻将有挂吗这款游戏

    2025年03月13日
    14
  • 今日教程“打麻将开挂下什么软件”实测确实有挂

    今日教程“打麻将开挂下什么软件网上科普有关“今日教程“打麻将开挂下什么软件”话题很是火热,小编也是针对今日教程“打麻将开挂下什么软件寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,今日教程“打麻将开挂下什么软件这款游戏可以开挂的,确实

    2025年03月13日
    14
  • 实操教程“微乐麻将必赢方法”实测确实有挂

    实操教程“微乐麻将必赢方法网上科普有关“实操教程“微乐麻将必赢方法”话题很是火热,小编也是针对实操教程“微乐麻将必赢方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,实操教程“微乐麻将必赢方法这款游戏可以开挂的,确实是有挂的,通过微

    2025年03月14日
    13
  • 少年歌词完整版打印

    网上科普有关“少年歌词完整版打印”话题很是火热,小编也是针对少年歌词完整版打印寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。《少年》完整版歌词如下:换种生活,让自己变得快乐。放弃执着,天气就会变得不错。每次走过,都是一次收获,还等什么,做对的选择。过去的,就

    2025年03月27日
    160
  • 教程辅助!“河北微乐麻将万能挂”果然有挂

    教程辅助!“河北微乐麻将万能挂网上科普有关“教程辅助!“河北微乐麻将万能挂”话题很是火热,小编也是针对教程辅助!“河北微乐麻将万能挂寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,教程辅助!“河北微乐麻将万能挂这款游戏可以开挂的,确实

    2025年03月16日
    12
  • 抗疫年轻人英雄事迹简介(抗疫年轻人英雄事迹简介怎么写)

    00后90后抗疫责任与担当事迹1、后90后抗疫责任与担当事迹(精选篇1)汪宁是一名北京科技大学的在读大学生。在谢家湾乡,和他一样每天坚守疫情监测点的共有304名大学生志愿者。2、疫情作文素材人物事例感人的有社区“90后”网格员张素娟的事迹:义无反顾的返程:张素娟在接到抗击疫情的通知后,克服交通不

    2025年03月18日
    12
  • 诛仙3合欢成佛任务详解

    网上科普有关“诛仙3合欢成佛任务详解”话题很是火热,小编也是针对诛仙3合欢成佛任务详解寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。必须飞升,下面是飞升后的任务流程1.飞升90级的时候自动接到任务,让你去周一仙老头那里选择登仙,入魔,还是成佛。选入魔。2

    2025年04月03日
    175
  • 3分钟学会“全民麻将可以开挂吗”分享装挂技巧步骤

    网上科普有关“全民麻将可以开挂吗”话题很是火热,小编也是针对同城衡阳字牌作弊开挂的方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,全民麻将可以开挂吗这款游戏可以开挂的,确实是有挂的,通过微信【游戏】很多玩家在这款游戏中打牌都会发现很多

    2025年04月03日
    5
  • 3分钟学会“川麻圈麻将系统给你发好牌(其实确实有挂)

    网上科普有关“川麻圈麻将系统给你发好牌”话题很是火热,小编也是针对同城衡阳字牌作弊开挂的方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,川麻圈麻将系统给你发好牌这款游戏可以开挂的,确实是有挂的,通过微信【游戏】很多玩家在这款游戏中打牌

    2025年04月03日
    4
  • 3分钟学会“江西中至棋牌怎么开挂”实测确实有挂

    网上科普有关“江西中至棋牌怎么开挂”话题很是火热,小编也是针对同城衡阳字牌作弊开挂的方法寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。  您好,江西中至棋牌怎么开挂这款游戏可以开挂的,确实是有挂的,通过微信【游戏】很多玩家在这款游戏中打牌都会发现

    2025年04月04日
    3

发表回复

本站作者后才能评论

评论列表(4条)

  • 钞明硕
    钞明硕 2025年04月06日

    我是小熊号的签约作者“钞明硕”!

  • 钞明硕
    钞明硕 2025年04月06日

    希望本篇文章《一窥天机:太空望远镜-》能对你有所帮助!

  • 钞明硕
    钞明硕 2025年04月06日

    本站[小熊号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 钞明硕
    钞明硕 2025年04月06日

    本文概览:网上科普有关“一窥天机:太空望远镜-”话题很是火热,小编也是针对一窥天机:太空望远镜-寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。2...